
Conception des systèmes critiques
CAP’TRONIC - Pôle PEGASE

An overview of the ASTRÉE Analyzer

Jérôme Feret
DIENS

(INRIA/ÉNS/CNRS)

http://www.di.ens.fr/∼ feret

Joint work with:
B. BLANCHET, P. COUSOT, R. COUSOT, L. MAUBORGNE,

A. MINÉ, D. MONNIAUX, X. RIVAL

1 Oct 2013

Certification of Critical Software

Goal of ASTRÉE:
Prove the absence of runtime errors in embedded, C programs

• Situation: bugs are no longer acceptable in such systems

-- May cause human casualties: transportation, energy
-- Prohibitive financial cost: Ariane 501 failure

• Automatic certification of the code is required

-- Soundness: absolutely essential
-- Strong efficiency requirements:

∗ Keep analysis time low:
analyses and fixes possible during development

∗ Precision:
number of alarms should be reasonable (e.g. < 10)

-- No alarm = full certification (If possible)

Jérôme Feret, DIENS 2 1 Oct 2013

Specialization of the Analyzer

• Specialization to a family of embedded programs:
Synchronous, real-time code:

delare and initialize state variables;

loop forever

read volatile input variables,

ompute output and state variables,

write to volatile output variables;

wait for next lok tik

end loop

• Properties of interest: Absence of run-time errors

-- No Run-Time Error
e.g. division by 0, NaN, out-of-bound array access

-- No integer / floating point overflow
-- User-defined properties, e.g. architecture dependent

Jérôme Feret, DIENS 3 1 Oct 2013

Specialization of the Analyzer

• Simplifying aspects:

-- Not full C: no malloc
-- No recursion, no backward goto
-- Data mostly static

• Challenging aspects:

-- Size: > 100 kLOC, > 10 000 variables
-- Floating point computations

including filtering, non linear control with feed-back, interpolations...
-- Interdependencies among variables:

∗ Stability of computations should be established
∗ Complex relations should be inferred among numerical, boolean

data
∗ Very long data paths from input to outputs

Jérôme Feret, DIENS 4 1 Oct 2013

Principle

Compute an over-approximation of the reachable states
• Model of the language: semantics

JP K = set of runs (i.e. traces) of P

-- C 99 norm
-- IEEE 754-1985 Floating point norm
-- User/architecture defined assumptions:

∗ Size of integer data types
∗ Initialization of statically allocated variables
∗ Range of inputs; maximum program run-time

• Abstraction = approximation relying on abstract domains

• Derivation of an automatic, sound static analyzer

• Certification of a program:

-- Fully automatic computation of an invariant
-- Verification of the absence of runtime errors

Jérôme Feret, DIENS 5 1 Oct 2013

Overview

1. The ASTRÉE Abstract Interpreter

2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jérôme Feret, DIENS 6 1 Oct 2013

Development of ASTRÉE

• Fall 2001: demand for a high precision, fast analyzer
ASTRÉE project started:

-- Scalability ensured first (algorithms and data-structures)
-- Simple, non relational domains
-- First refinements
-- Analysis of 10 kLOCs, low number of alarms

• Then, real applications considered:

-- Investigation of an alarm:
⇒ Source of imprecision
⇒ true alarm or need for a refinement?

-- Implementation of new domains,
solve imprecisions and preserve scalability

-- Analysis of several families of real-world, large applications

Jérôme Feret, DIENS 7 1 Oct 2013

Abstractions and Abstract Domains

• What ASTRÉE computes:
Invariant I ∈ D♯: approximation for the set of traces JP K

• Structure of the abstraction I ∈ D♯:

-- For each control point l
-- For each execution context κ (e.g. calling stack)

⇒ an approximation I(l, κ) ∈ D♯
M for a set of memory states

• Layout of D♯
M:

-- Reduced product of a collection of abstract domains
-- Each domain:

∗ Expresses a (generally infinite) family of predicates
∗ Transfer functions: assign ,guard , ... operators
∗ Approximations for ∪: ⊔ and ∇ (convergence acceleration)

Jérôme Feret, DIENS 8 1 Oct 2013

The Abstract Interpreter
Principle: play all executions in a single, abstract computation

• Analysis of a basic statement x = e:

-- Transfer function assign (x = e) : D♯
M → D♯

M

-- D♯
M: accounts for the new/removed constraints

• Analyzing compound programs, e.g. loops:

U U U

while (...) { ... }
memorized abstract invariants

propagated abstract invariants

Program Iterative invariant computation

Jérôme Feret, DIENS 9 1 Oct 2013

Overview

1. The ASTRÉE Abstract Interpreter

2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jérôme Feret, DIENS 10 1 Oct 2013

A Simple Domain: Intervals

• Resolution of concrete cells:

-- 1 abstract cell ≡ 1 or more concrete cells (smashed arrays)
-- Simple points-to information

• Interval abstraction:

-- Constraints a ≤ x ≤ b (x abstract cell)
-- Very common abstraction
-- Implementation: sound approximation for floating point

(in all domains)

• Development of ASTRÉE: structure + intervals was the base:

-- Enough to express the absence of runtime-errors
(array bounds, overflows)

-- Not enough to express its proof

Jérôme Feret, DIENS 11 1 Oct 2013

Octagons

• Interval analysis:

-- At ①, x ∈ [−10, 10]; y ∈ [0, 10]

-- At ②, x ∈ [−10, 10]; y ∈ [0, 5]

-- Alarm (assert not proved)

assume(x ∈ [−10, 10])
if(x < 0){y = −x; }
else{y = x; }
①if(y ≤ 5)

{②assert(−5 ≤ x ≤ 5); }

• A relation between x and y is required:
⇒ We need a relational abstraction

• Octagons:

-- Express constraints of the form ±x± y ≤ c.
Above example:
∗ At ①, 0 ≤ y− x ≤ 20; 0 ≤ y + x ≤ 20

∗ At ②, y ∈ [0, 5]; 0 ≤ y− x ≤ 20; 0 ≤ y + x ≤ 20,
so we derive x ∈ [−5, 5]

-- Reasonable cost: O(n2) memory and O(n3) time complexity

Jérôme Feret, DIENS 12 1 Oct 2013

Using Octagons
Several issues should be addressed:

• Scalability: O(n3) time, n ≡ 10 000 will not scale:
⇒ Use many small octagons instead of a big one

-- Packs: small group of variables relations are required for
-- Strategy: determines packs, required relations represented
-- Complexity: linear in the number of packs

Size of packs: bounded by a constant
Number of packs: linear in the size of the code
⇒ Linear complexity

• Floating point rounding errors in the concrete computations
solved by linearization of expressions:

-- Expressions approximated with real interval linear forms
-- Relational domain: semantics in terms of real numbers
-- Rounding errors in concrete computations accounted for at lin-

earization time

Jérôme Feret, DIENS 13 1 Oct 2013

Analyzing Filters

Simplified 2nd Order Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

• Computes Xn =

{

αXn−1 + βXn−2 + Yn

In

• The concrete computation is bounded,
which must be proved in the abstract

• No stable interval or octagon

• Simplest stable surface is an ellipse

X U F(X)

X
F(X)

F(X)
X

X U F(X)

Unstable intervals Stable ellipse

Jérôme Feret, DIENS 14 1 Oct 2013

Bounding Slow Divergences

• With real numbers: x = 1.0 at ①

• With floating point numbers:
⇒ rounding errors in the concrete;
⇒ these errors accumulate;
⇒ possible cause of divergence

x = 1.0;
while(TRUE){①

x = x/3.0;
x = x ⋆ 3.0;

}

Solution: an arithmetico-geometric progression domain, aimed at bounding
the rounding errors using the number of iterations:

• Relation | x |≤ A · Bn + C,
where A,B,C are constants, n is the iteration number

• Number of iterations: bounded by N : ⇒ | x |≤ A · BN + C

Jérôme Feret, DIENS 15 1 Oct 2013

Decision Trees

• Non relational analysis: alarm at ② (div. 0)

• Relations needed at ①:

-- bp = FALSE ⇒ x 6= 0

-- bn = FALSE ⇒ x 6= 0

Solution: Domain similar to BDDs:

• Nodes labeled with booleans variables

• Leaves: values in an underlying domain
e.g. interval in the example

Scalability problems:

• Packing, similar to octagons

bp = x ≤ 0.;
bn = x ≥ 0.;
①if(bp && bn)

②y = 0.0;
else y = 1.0/x;

bp

bn x < 0

x = 0 x > 0

T
F

T
F

Jérôme Feret, DIENS 16 1 Oct 2013

Trace Partitioning

• No partitioning, interval analysis, at ①:

-- i ∈ [0, 2]

-- (t[i + 1]− t[i]) ∈ [−10, 20]

-- Alarm at ① (divide by 0)

assume(x ∈ [0, 15]);
float t = {0, 10, 20, 30};
int i = 0;
while(i < 3 && x < t[i + 1])

{i + +; }
①y = 1.0/(t[i + 1]− t[i]);

• We need to do case-by-case analysis:

-- Relate x and i

-- Relate x and the number of iterations in the loop

• General, control-based partitioning domain

• Partitioning strategy (choice of partitions)

Jérôme Feret, DIENS 17 1 Oct 2013

Overview

1. The ASTRÉE Abstract Interpreter

2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jérôme Feret, DIENS 18 1 Oct 2013

Use of ASTRÉE

• The analyzer:

-- Full automatic mode:
Should do well for the families of programs ASTRÉE is designed
for

-- ≃ 150 options, so as to set
∗ The input (one or many files...)
∗ The iteration strategy, the packing strategy
∗ The domains to enable or disable, domain parameters
∗ The export of invariants to disk

-- Standard output: alarms, invariants
-- Can be run in parallel mode

• A graphical interface:
Navigation through invariants (saved invariants)

Jérôme Feret, DIENS 19 1 Oct 2013

Industrial applications

In Nov. 2003, ASTRÉE certified the
absence of any RTE in the primary
flight control software of the Airbus
A340.

In Apr. 2005, ASTRÉE certified elec-
tric flight control codes then in devel-
opment and test for the A380 series.

In Apr. 2008, ASTRÉE was able to
prove the absence of any RTE in a C
version of the automatic docking soft-
ware of the Jules Vernes ATV (for the
International Space Station).

ASTRÉE is commercially available from AbsInt Angewandte Informatik.

Jérôme Feret, DIENS 20 1 Oct 2013

Benchmarks

Program number Nb of lines Nb of iterations Time
1 70k 49 1h35
2 154k 218 11h36
3 173k 199 14h30
1 122k 27 41mn
2 502k 69 7h34
3 544k 181 22h37
4 594k 123 23h
5 780k 144 32h
6 705k 141 28h

On a 2.6 GHZ single core 64-bit Intel under Linux, using between 2GB and
8GB of memory.

Jérôme Feret, DIENS 21 1 Oct 2013

Overview

1. The ASTRÉE Abstract Interpreter

2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jérôme Feret, DIENS 22 1 Oct 2013

Main Project Results

• The proof of strong safety properties is amenable to static analysis
methods:

-- Very few or no false alarms
-- Reasonable resource usage
-- Thanks to a specialized abstract interpreter

• Many practical and theoretical advances:

-- Relational numerical domains and floating point
-- Packing, linearization and relational domains
-- Development of new, specialized domains
-- Implementation of symbolic domains, e.g. partitioning, symbolic...

Jérôme Feret, DIENS 23 1 Oct 2013

Ongoing works

• Analyze asynchronous programs

⇒ abstract interleavings while preserving the accuracy of the analyzer.
Encouraging early results: alarms successfully diagnosed

• Analyze more complex data-structures

⇒ Design scalable shape analysis for recursive data-structures.

Jérôme Feret, DIENS 24 1 Oct 2013

