Conception des systemes critiques
CAP'TRONIC - Péle PEGASE

An overview of the ASTREE Analyzer

Jérome Feret
DIENS
(INRIA/ENS/CNRS)

http://www.di.ens.fr/~ feret

Joint work with:
B. BLANCHET, P.COUSOT, R.COUSOT, L.MAUBORGNE,
A. MINE, D. MONNIAUX, X.RIVAL

1 Oct 2013

Certification of Critical Software

Goal of ASTREE:
Prove the absence of runtime errors in embedded, C programs

e Situation: bugs are no longer acceptable in such systems

- May cause human casualties: transportation, energy
- Prohibitive financial cost: Ariane 501 failure

e Automatic certification of the code is required

- Soundness: absolutely essential
- Strong efficiency requirements:

x Keep analysis time low:
analyses and fixes possible during development
x Precision:
number of alarms should be reasonable (e.g. < 10)

- No alarm = full certification (If possible)

Jérome Feret, DIENS 2 1 Oct 2013

Specialization of the Analyzer

e Specialization to a family of embedded programs:
Synchronous, real-time code:

declare and 1nitialize state variables;

loop forever
read volatile input variables,
compute output and state variables,
write to volatile output variables;
walt for next clock tick

end loop

e Properties of interest: Absence of run-time errors

- No Run-Time Error
e.g. division by 0, NaN, out-of-bound array access
- No integer / floating point overflow
- User-defined properties, e.g. architecture dependent

Jérome Feret, DIENS 3 1 Oct 2013

Specialization of the Analyzer

e Simplifying aspects:
- Not full C: no malloc
- No recursion, no backward goto
- Data mostly static

e Challenging aspects:

- Size: > 100 kLOC, > 10000 variables

- Floating point computations
including filtering, non linear control with feed-back, interpolations...
- Interdependencies among variables:
x Stability of computations should be established
x Complex relations should be inferred among numerical, boolean
data
+ Very long data paths from input to outputs

Jérome Feret, DIENS 4 1 Oct 2013

Principle

Compute an over-approximation of the reachable states

e Model of the language: semantics
[P] = set of runs (i.e. traces) of P

- C 99 norm
- |[EEE 754-1985 Floating point norm
- User/architecture defined assumptions:
x Size of integer data types
x Initialization of statically allocated variables
x Range of inputs; maximum program run-time

e Abstraction = approximation relying on abstract domains
e Derivation of an automatic, sound static analyzer
e Certification of a program:

- Fully automatic computation of an invariant
- Verification of the absence of runtime errors

Jérome Feret, DIENS 5

1 Oct 2013

Overview

1. The ASTREE Abstract Interpreter
2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jérome Feret, DIENS 6 1 Oct 2013

Development of ASTREE

e Fall 2001: demand for a high precision, fast analyzer
ASTREE project started:
- Scalability ensured first (algorithms and data-structures)
- Simple, non relational domains
- First refinements
- Analysis of 10 kLOCs, low number of alarms

e Then, real applications considered:

- Investigation of an alarm:
= Source of imprecision
= true alarm or need for a refinement?

- Implementation of new domains,
solve imprecisions and preserve scalability

- Analysis of several families of real-world, large applications

Jérome Feret, DIENS 7

1 Oct 2013

Abstractions and Abstract Domains

e What ASTREE computes:
Invariant I € D*: approximation for the set of traces [P]
e Structure of the abstraction I € D*:

- For each control point
- For each execution context « (e.g. calling stack)

— an approximation I(l, x) € D for a set of memory states

e Layout of Di:
- Reduced product of a collection of abstract domains
- Each domain:
x Expresses a (generally infinite) family of predicates

« Transfer functions: assign, guard , ... operators
« Approximations for U: LI and V (convergence acceleration)

Jérome Feret, DIENS 8 1 Oct 2013

The Abstract Interpreter

Principle: play all executions in a single, abstract computation
e Analysis of a basic statement z = e:

- Transfer function assign(xz = e) : Dy — Dj,
- D% accounts for the new/removed constraints
e Analyzing compound programs, e.g. loops:

while (.) { ...} /

A

propagated abstract invariants / I

Program Iterative invariant computation

memorized abstract invariants

Jérome Feret, DIENS 9 1 Oct 2013

Overview

1. The ASTREE Abstract Interpreter
2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jéréme Feret, DIENS 10 1 Oct 2013

A Simple Domain: Intervals

e Resolution of concrete cells:

- 1 abstract cell = 1 or more concrete cells (smashed arrays)
- Simple points-to information

e Interval abstraction:
- Constraints a < z < b (x abstract cell)

- Very common abstraction

- Implementation: sound approximation for floating point
(in all domains)

e Development of ASTREE: structure + intervals was the base:

- Enough to express the absence of runtime-errors
(array bounds, overflows)

- Not enough to express its proof

Jérome Feret, DIENS 11 1 Oct 2013

Octagons

e Interval analysis: assume(x ¢ |10, 10))
-At®, xe[-10,10]; y € [0, 10] :;‘I(ze?y()):{s}’{%} —x;}
-At®, x¢c[-10,10]; y € [0,3] Dif(y < 5)

- Alarm (assert not proved) {@assert(—5 <z <5); }

e A relation between x and y is required:
= We need a relational abstraction

e Octagons:
- Express constraints of the form +z + y < c.
Above example:
x At®, 0<y—x<20; 0<y+x<20
x* At@, yel0,5]; 0<y—x<20; 0<y+x<20,
so we derive x € [—5, 5]
- Reasonable cost: O(n?) memory and O(n’) time complexity

Jérome Feret, DIENS 12 1 Oct 2013

Using Octagons

Several issues should be addressed:

e Scalability: O(n?) time, n = 10000 will not scale:
= Use many small octagons instead of a big one

- Packs: small group of variables relations are required for

- Strategy: determines packs, required relations represented

- Complexity: linear in the number of packs
Size of packs: bounded by a constant
Number of packs: linear in the size of the code
=- Linear complexity

e Floating point rounding errors in the concrete computations
solved by linearization of expressions:

- Expressions approximated with real interval linear forms
- Relational domain: semantics in terms of real numbers

- Rounding errors in concrete computations accounted for at lin-

earization time

Jérome Feret, DIENS 13

1 Oct 2013

Analyzing Filters

Simplified 2nd Order Filter:

%} [b]

v

« [O

W N X
S
t Unit delay ﬂ :

Unstable intervals

Jérome Feret, DIENS

Computes

X'n, - {

Oéanl + 6Xn72 + Y;z
In

The concrete computation is bounded,
which must be proved in the abstract

No stable interval or octagon

Simplest stable surface is an ellipse

14

Stable

“" X UF(X)

ellipse

1 Oct 2013

Bounding Slow Divergences

e With real numbers: z =1.0at®

x = 1.0;
e With floating point numbers: while(TRUE){®
=- rounding errors in the concrete; X = X/géo;o-
— these errors accumulate; \ X = XxoD

= possible cause of divergence

Solution: an arithmetico-geometric progression domain, aimed at bounding
the rounding errors using the number of iterations:

e Relation |z |[< A-B"+C,
where A, B, C' are constants, n is the iteration number

e Number of iterations: bounded by N: = |z |[< A-BY +C

Jéréme Feret, DIENS 15 1 Oct 2013

Decision Trees

e Non relational analysis: alarm at @ (div. 0)

bp=x <0,
e Relations needed at @: bn =x > 0;
@if(bp && bn)
-bp:FALSEjX#O @y:0.0;
- bn = FALSE = x # (else y = 1.0/x;
Solution: Domain similar to BDDs:
e Nodes labeled with booleans variables .
e Leaves: values in an underlying domain U
e.g. interval in the example ((bn DI x<0
Scalability problems: /T
X=0] x>0

e Packing, similar to octagons

Jéréme Feret, DIENS 16 1 Oct 2013

Trace Partitioning

e No partitioning, interval analysis, at @: assume(x € [0, 15));
float t = {0, 10,20, 30}:
-iel0,2] inti =0;
- (t[1 4+ 1] — t[i]) € [-10,20] Wf}i!i(i:}B Llex < tfi+1])
- Alarm at @ (divide by 0) Dy = 1.0)(t[i +1] — t[i]);

e We need to do case-by-case analysis:

- Relate x and i
- Relate x and the number of iterations in the loop

e General, control-based partitioning domain
e Partitioning strategy (choice of partitions)

Jérome Feret, DIENS 17 1 Oct 2013

Overview

1. The ASTREE Abstract Interpreter
2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jéréme Feret, DIENS 18 1 Oct 2013

Use of ASTREE

e The analyzer:

- Full automatic mode:
Should do well for the families of programs ASTREE is designed
for

- ~ 150 options, so as to set
x The input (one or many files...)
x The iteration strategy, the packing strategy
x The domains to enable or disable, domain parameters
x The export of invariants to disk

- Standard output: alarms, invariants
-~ Can be run in parallel mode

e A graphical interface:
Navigation through invariants (saved invariants)

Jéréme Feret, DIENS 19 1 Oct 2013

Industrial applications

In Nov. 2003, ASTREE certified the
absence of any RTE in the primary
flight control software of the Airbus
A340.

In Apr. 2005, ASTREE certified elec-
tric flight control codes then in devel-
opment and test for the A380 series.

In Apr. 2008, ASTREE was able to
prove the absence of any RTE ina C
version of the automatic docking soft-
ware of the Jules Vernes ATV (for the

International Space Station). .

ASTREE is commercially available from AbsInt Angewandte Informatik.

Jéréme Feret, DIENS 20 1 Oct 2013

Benchmarks

Program number Nb of lines | Nb of iterations | Time
1 70k 49 1h35
2 154k 218 11h36
3 173k 199 14h30
1 122k 27 41mn
2 502k 69 7h34
3 544k 181 22h37
4 594k 123 23h
5 780k 144 32h
6 705k 141 28h

On a 2.6 GHZ single core 64-bit Intel under Linux, using between 2GB and
8GB of memory.

Jérome Feret, DIENS

21

1 Oct 2013

Overview

1. The ASTREE Abstract Interpreter
2. Abstract Domains

3. Practical Use and Benchmarks

4. Conclusions and Perspectives

Jérome Feret, DIENS 22 1 Oct 2013

Main Project Results

e The proof of strong safety properties is amenable to static analysis

methods:

- Very few or no false alarms
- Reasonable resource usage
- Thanks to a specialized abstract interpreter

e Many practical and theoretical advances:

- Relational numerical domains and floating point
- Packing, linearization and relational domains
- Development of new, specialized domains

- Implementation of symbolic domains, e.g. partitioning, symbolic...

Jérome Feret, DIENS 23

1 Oct 2013

Ongoing works

e Analyze asynchronous programs

=- abstract interleavings while preserving the accuracy of the analyzer.
Encouraging early results: alarms successfully diagnosed

e Analyze more complex data-structures

=- Design scalable shape analysis for recursive data-structures.

Jérome Feret, DIENS 24 1 Oct 2013

