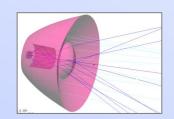
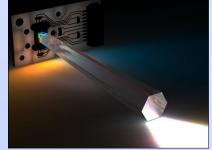
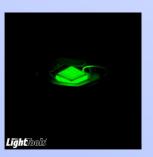
Conceptions optiques des systèmes à LED

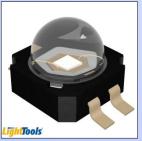
Angers, le 15 Oct 2013

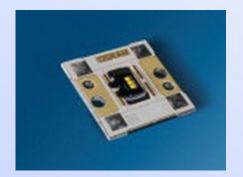
Yan Cornil, LightTec


Eclairage à LED : Applications

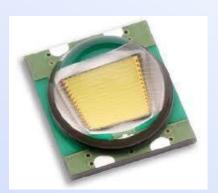


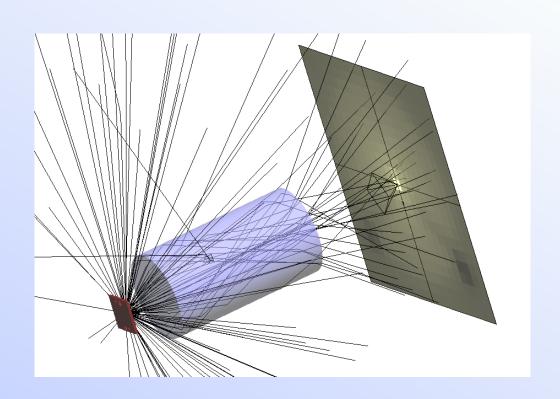

Cahier des Charges


- Données d'entrée variables suivants les donneurs d'ordre
 - De "Je souhaite utiliser la LED XXX, un guide de 2 cm et avoir une éclairement uniforme en sortie sur 3 cm "
 - A : un document de 40 pages avec des normes à respecter
- Dans tous les cas , il faut
 - Faire un souhait sur le choix des LED, si possible
 - Une limitation en encombrement, et les contraintes de fabrication
 - Et un but : Couleur, uniformité , puissance , luminance, intensité


Choix des LEDs

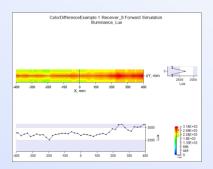
- Il se fait en fonction
 - Des puissances souhaitées
 - Encombrement
 - Couleur, spectre
 - Prix

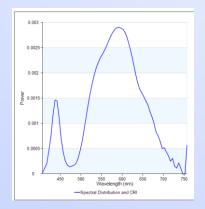


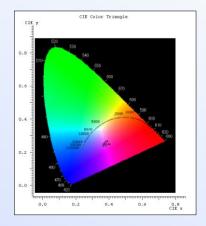


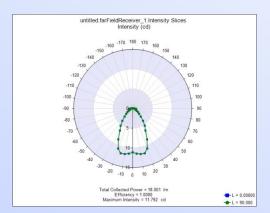
Encombrement

- Volume
- Tolérance
- Cout
- Matériau
- Température
- Vibration
- Exposition aux UV (soleil)




Specifications


Uniformité


Couleurs

- Spectres
- Intensité

Outils de conception

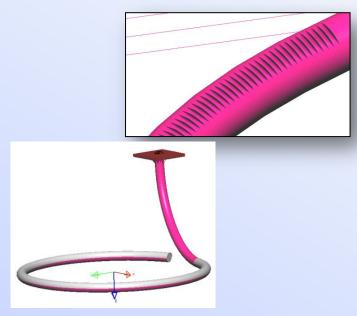
Crayons et papiers

Logiciel de conception mecanique

creo parametric

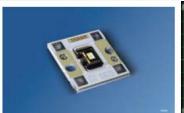
Et d'autres

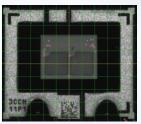
Logiciel de conception optique

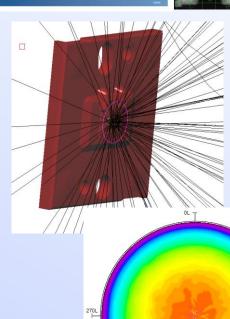

Et d'autres

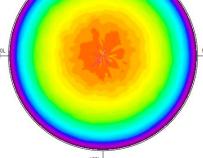
Exemple de conception d'un guide de lumière

- Exemple d'un DRL (day running light)
- Inclue la plupart des problèmes possibles :
 - températures
 - encombrement
 - puissance
 - prix
 - vibrations
 - Spécifications
 - tolérances

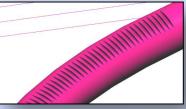






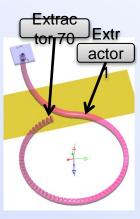

Choix de la LED et Modèle

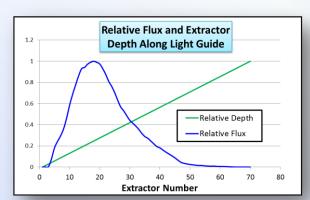
- Besoin d'un LED haute puissance compatible avec les exigences automobiles
- Choix : OSRAM "Headlamp" LED, LEUW_U1A2_01,
- LED disponible avec une surface emmissive de 1 x 2 mm ou 1 x 5 mm et une puissance de 630-1120 lumens
- Choix 1 x 2 mm pour une injection plus facile, avec une distribution d'intensité lambertienne selon la documentation technique.
- Création de la géométrie dans le logiciel

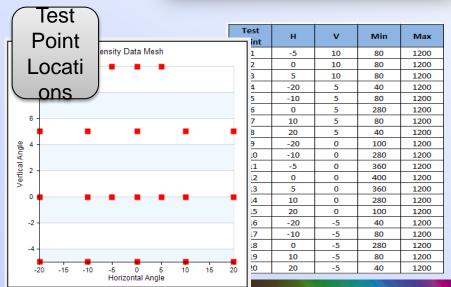

Intensity Raster Plot

Specifications

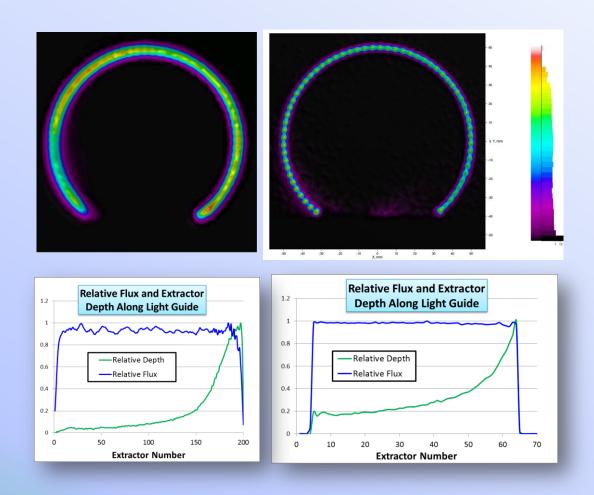
Uniformité


- Meilleure que +/- 5 %
- Structure à prismes ou à micro spheres

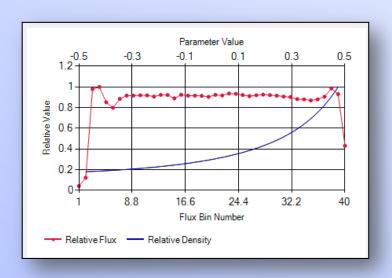


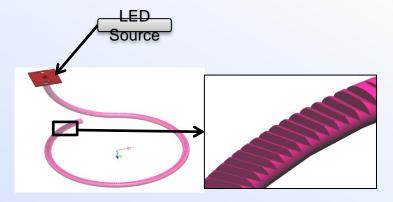


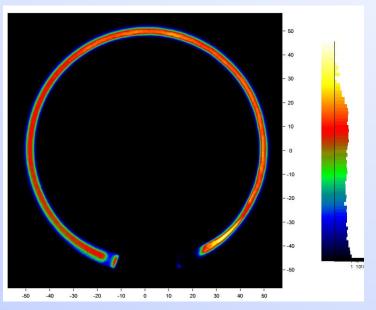
Intensité


 Utilisation de la norme ECE pour l'intensité

Solutions intermédiaires

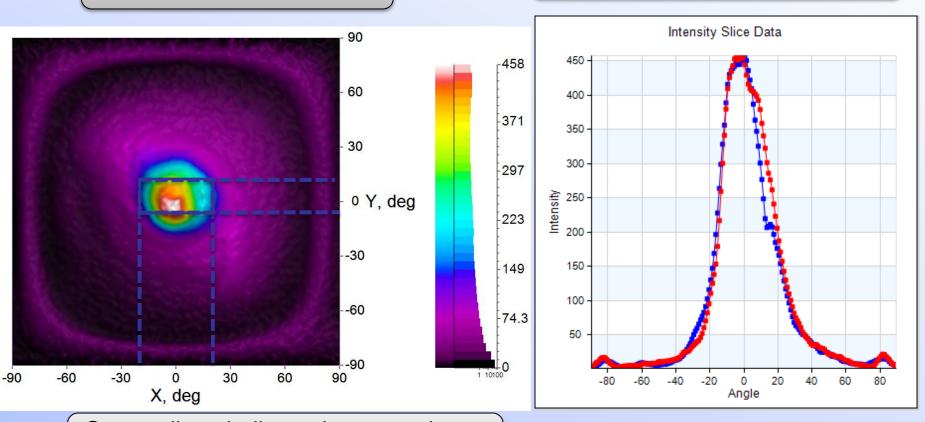






Solution retenue

- Solutions à 500 prismes
- +/- 4 % sauf zone d'injection

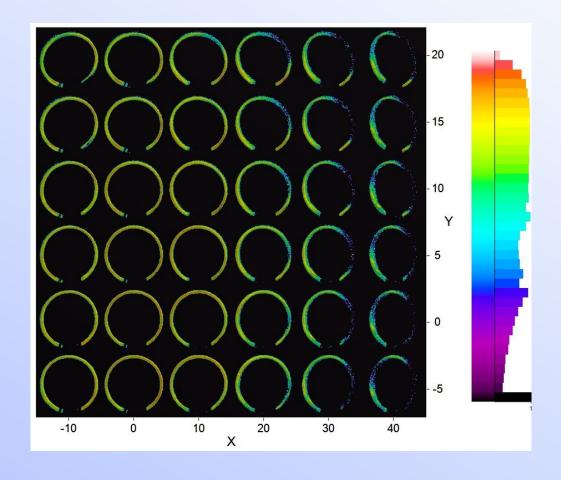


Résultats en Intensité

Intensity Raster Plot

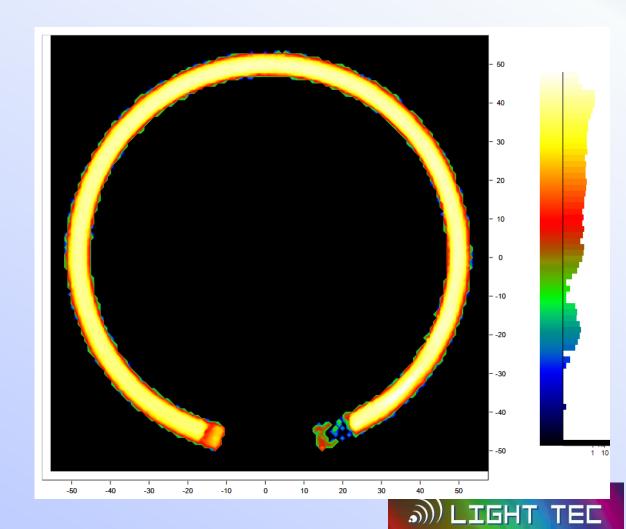
Orthogonal Slices through Plot

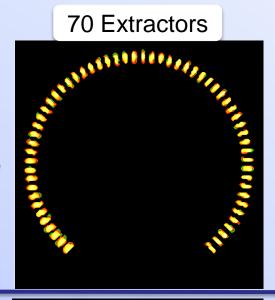
Orange lines indicate the approximate boundaries of the test points

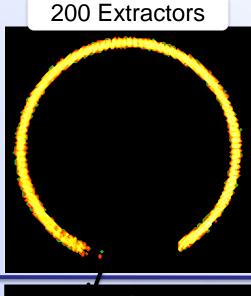

Résultats sur les points tests

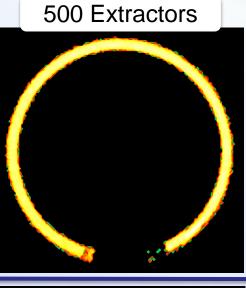
 Tous les points tests passent avec une calibration de la source LED à 500 lumen

Test Point	Н	V	Min	Max	Actual	STD	Result
T1	-5	10	80	1200	371	10	PASS
T2	0	10	80	1200	366	9	PASS
T3	5	10	80	1200	329	9	PASS
T4	-20	5	40	1200	140	6	PASS
T5	-10	5	80	1200	388	10	PASS
T6	0	5	280	1200	404	10	PASS
T7	10	5	80	1200	269	8	PASS
T8	20	5	40	1200	170	6	PASS
T9	-20	0	100	1200	125	5	PASS
T10	-10	0	280	1200	405	10	PASS
T11	-5	0	360	1200	443	10	PASS
T12	0	0	400	1200	452	10	PASS
T13	5	0	360	1200	397	10	PASS
T14	10	0	280	1200	288	8	PASS
T15	20	0	100	1200	171	6	PASS
T16	-20	-5	40	1200	102	5	PASS
T17	-10	-5	80	1200	361	9	PASS
T18	0	-5	280	1200	452	10	PASS
T19	10	-5	80	1200	293	8	PASS
T20	20	-5	40	1200	149	6	PASS

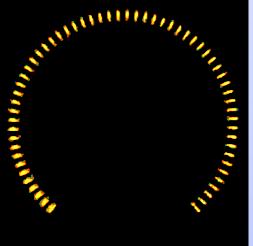

Aspect en fonction de l'angle d'observation


Aspect en rendu réaliste

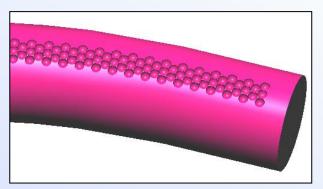

- Collection dans un angle de 5 °
- Et par un oeil à 2 m

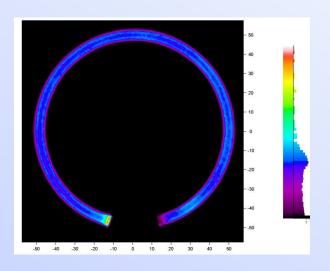


Influence de la distance d'observation


Vues d'une distance de 6 metres

Vues d'une distance de 2metres

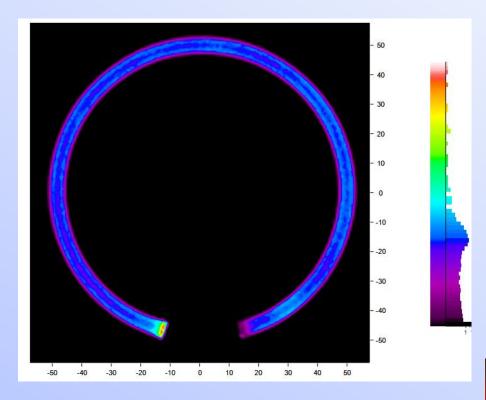


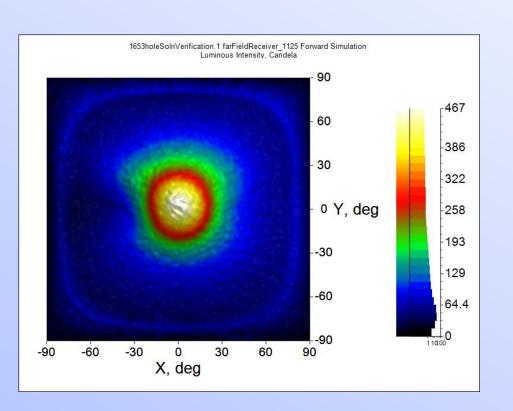


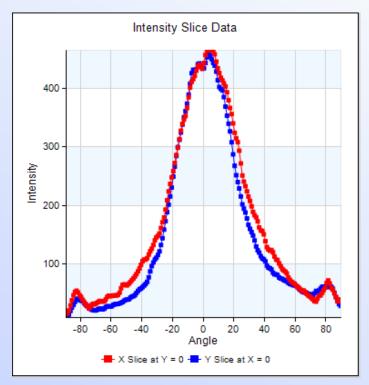
Variante avec une extraction par des microsphéres

- Try a non-wedge design
- 1,653, 0.25 mm radius spherical holes—vary depth of holes (0 to 0.25 mm) to increase extraction area
- White reflector below the spheres
- White reflective endcap
- Optimized (2nd degree, rational) Bezier-curve density profile using 200k Rays to get uniform flux into a 45 degree cone angle

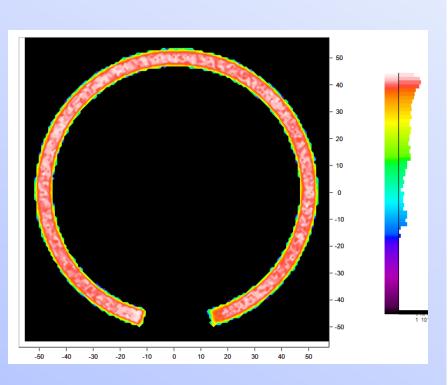
Start Value (depth): 0.0783 mm Stop Value (depth): 0.25 mm C1 Fractional Height: 0.10759 C1 Fractional Width: 0.6876 C1 Weight Factor: 0.6678

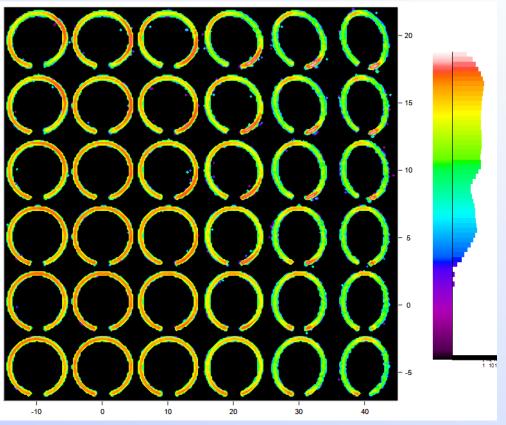



Flux Extraction and Illuminance Distribution


 Aside from hot spot at output edge, had uniform spatial distribution

Distribution en Intensité


Résultats sur les points tests


 Les points tests passent pour Calibration pour 1100 lumen

Test Point	Н	V	Min	Max	Actual	STD	Result
T1	-5	10	80	1200	424	20	PASS
T2	0	10	80	1200	431	20	PASS
T3	5	10	80	1200	424	20	PASS
T4	-20	5	40	1200	240	15	PASS
T5	-10	5	80	1200	400	19	PASS
T6	0	5	280	1200	464	21	PASS
T7	10	5	80	1200	406	19	PASS
T8	20	5	40	1200	279	16	PASS
Т9	-20	0	100	1200	242	15	PASS
T10	-10	0	280	1200	387	19	PASS
T11	-5	0	360	1200	434	20	PASS
T12	0	0	400	1200	441	20	PASS
T13	5	0	360	1200	459	21	PASS
T14	10	0	280	1200	413	19	PASS
T15	20	0	100	1200	278	16	PASS
T16	-20	-5	40	1200	228	14	PASS
T17	-10	-5	80	1200	354	18	PASS
T18	0	-5	280	1200	423	20	PASS
T19	10	-5	80	1200	393	19	PASS
T20	20	-5	40	1200	266	16	PASS

Aspect en fonction de l'angle d'observation

Conclusions pour ce design

- Les deux approches , prismes et micro spheres permettent d'obtenir l'uniformité souhaitée
- Ils passent facilement les normes ECE
- Le nombre de micro-prismes influent beaucoup sur l'uniformité, mais il faudrait définir une distance minimale d'oservation
- Les extracteurs de type microsphere permettent un angle de vue plus important, mais neccessitent une puissance d'injection plus importante.

Prototypage et Mesure

 La dernière étape constiste à mesurer les prototypes obtenues pour vérification

.....parfois

Variation normale +/- 10 %

Merci pour votre attention QUESTIONS?

Venez nous voir

Bureaux et laboratoire

